Mirror Symmetric Topographic Maps Can Arise from Activity-Dependent Synaptic Changes
نویسندگان
چکیده
Multiple adjacent, roughly mirror-image topographic maps are commonly observed in the sensory neocortex of many species. The cortical regions occupied by these maps are generally believed to be determined initially by genetically controlled chemical markers during development, with thalamocortical afferent activity subsequently exerting a progressively increasing influence over time. Here we use a computational model to show that adjacent topographic maps with mirror-image symmetry can arise from activity-dependent synaptic changes whenever the distribution radius of afferents sufficiently exceeds that of horizontal intracortical interactions. Which map edges become adjacent is strongly influenced by the probability distribution of input stimuli during map formation. Our results suggest that activity-dependent synaptic changes may play a role in influencing how adjacent maps become oriented following the initial establishment of cortical areas via genetically determined chemical markers. Further, the model unexpectedly predicts the occasional occurrence of adjacent maps with a different rotational symmetry. We speculate that such atypically oriented maps, in the context of otherwise normally interconnected cortical regions, might contribute to abnormal cortical information processing in some neurodevelopmental disorders.
منابع مشابه
Plasticity-Induced Symmetry Relationships Between Adjacent Self-Organizing Topographic Maps
In many species, adjacent topographic maps in sensory neocortex are found to be oriented as roughly mirror-image copies of one another. Here we use a computational model to show for the first time that, in principle, adjacent cortical topographic maps that are mirror-image symmetric along two dimensions can arise from activity-dependent changes if the distribution radius of afferents sufficient...
متن کاملFunctional Topography of Connections Linking Mirror-Symmetric Maps in the Mouse Olfactory Bulb
In rodents, each main olfactory bulb contains two mirror-symmetric glomerular maps, a feature not found in the initial topographic maps of other sensory systems. Targeting tracer injections to identified glomeruli revealed that isofunctional odor columns-translaminar assemblies connected to a given glomerulus-were specifically and reciprocally interconnected through a mutually inhibitory circui...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملMulti - Winner Self - Organizing Maps by Reiner
Title of Dissertation: One-Shot Multi-Winner Self-Organizing Maps Reiner Schulz, Doctor of Philosophy, July 22, 2004 Dissertation directed by: Dr. James Reggia Department of Computer Science There exist two different approaches to self-organizing maps (SOMs). One approach, rooted in theoretical neuroscience, uses SOMs as computational models of biological cortex. The other approach, taken in co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2005